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Summary

We describe the Zen Protocol, the basis for a decentralized financial
platform. This paper assumes more technical knowledge than the ac-
companying white paper, and may be read as a rough specification of
the Protocol.
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1 Introduction

Zen is a public blockchain, secured by proof of work, with powerful smart
contracts and a practically unlimited number of assets.

Zen uses an “unspent transaction output” (UTXO) model, or a coin-
oriented model. This means that instead of focusing on accounts and rules
for accessing them, Zen knows about coins and the rules for spending them.
This is the same design choice as for Bitcoin, preventing several problems
affecting account-oriented blockchains.

Bitcoin locks coins with Script, a simple stack-based language without re-
cursion. In contrast, in the Zen protocol, output locks don’t contain opcodes.
Instead, output locks can either be unlocked with a public key signature,
or by a named contract. Contracts decide whether to unlock an output by
processing information present in the blockchain, including data attached to
the output itself.

Zen contracts are black boxes: once made, they act as pure functions
which generate transactions. They are not timed by Zen nodes, and how
they generate their output is not tracked by the Zen protocol consensus. Zen
limits the resource consumption of contracts by requiring that they prove
what resources they consume once, at the moment they enter consensus.

Contracts remain active and able to affect the blockchain for a limited
amount of time. They pay miners for each block they remain in the active
contract set. Contracts are written in F*, then compiled by nodes when
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they activate. A contract can be extended by an additional payment, la-
beled with its identifying hash, but contracts which deactivate can only be
reactivated by providing their source code once more.

The Zen protocol directly incorporates the state of the Bitcoin blockchain
by reference. Each Zen block may commit to one or many Bitcoin blocks
by including their block headers. Zen nodes should validate the Bitcoin
blockchain as well as the Zen blockchain—simply validating the Bitcoin
proof-of-work is not advisable to a miner, but may be perfectly acceptable
for a non-mining node or a thin client. Zen contracts can take serialized Bit-
coin transactions, prove them to be present in certain Bitcoin blocks, and
alter their behaviour depending on the Bitcoin blockchain.

The Zen protocol supports many different types of asset. Just as each
contract is identified by its hash, the assets it creates are likewise identified
by that same hash, plus an index.1 A contract with hash H may create, or
destroy, as much as it pleases of any asset whose identifier begins with H.

The asset with identifier (0,0) is the Zen token, which is generated by
mining and is used to activate contracts.

2 Hashing

Our cryptographically secure hashing algorithm is SHA-3, with 256-bit
output. SHA-3 is not susceptible to length-extension attacks, an occasional
source of unpleasant vulnerabilities in blockchain protocols. Additionally,
we use tagged hashing for all data types, by adding a short type-specific
prefix to each serialized object. This makes it unfeasible to create any two
distinct objects, or lists of objects (including empty lists) sharing the same
hash [Todd, 2016]. The tags are:

Transaction tx
OutputLock ol

Spend sp
Outpoint outpoint

Output output
Contract contract

BlockHeader block
Tagged hashing is particularly useful for the construction of “efficient

sparse merkle trees”, used for commitments to the active contract set, as
described below.

3 Serialization

Almost every Zen data structure is serialized according to the MessagePack
format. A widely used, extensible, efficient binary serialization format, Mes-

1Each contract may create up to 2256 types of asset.
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sagePack does suffer from a lack of canonicity—more than one serialization
can map to the same deserialized data structure. We evade this issue by
requiring that any packed Zen structure match itself when round-tripped
through deserialization and reserialization, thus establishing a canonical se-
rialization. This requirement can be checked very easily by performing the
round-trip, but more quickly with a smarter deserializer. The 1.0 release of
Zen will use a fast, formally verified implementation of MessagePack that
enforces a canonical form for each data structure.

4 Digital signature scheme

We use ed25519, as implemented by libsodium. This provides 32-byte public
keys and 64-byte signatures. Future releases may include other signature
schemes via soft-fork.2 All cryptographic primitives used in Zen can be used
by Zen contracts.

5 Blocks

Let us now look at how the Zen blockchain is produced.
The Zen blockchain begins with a genesis block to which very minimal

validation is applied. Any valid blockchain must be rooted at the genesis
block. Every non-genesis block must conform to rules about:

1. Structural validity

2. Proof of work

3. Merkle root commitments

4. Transaction validity

5. Other chain state validity

We deal with each of these in turn.

5.1 Structural validity

This simply refers to the requirement that each block be validly formatted.
Here is the schematic block structure.

2The principle candidates are Schnorr signatures for multisignature aggregation and
other improvements, and, over the medium term, a post-quantum scheme based on super-
singular isogeny.
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〈block〉 |= 〈block-header〉 〈transaction-list〉
〈block-header〉 |= 〈block-version〉 〈parent〉 〈block-number〉

〈commitments〉 〈timestamp〉 〈target〉 〈nonce〉
〈block-version〉 |= block version: uint32

〈parent〉 |= 256-bit hash of parent block

〈block-number〉 |= number of blocks from genesis block

〈commitments〉 |= 〈transaction-merkle-root〉 〈witness-merkle-root〉
〈contract-merkle-root〉 〈extra-data〉

〈*-merkle-root〉 |= 256-bit merkle root

〈extra-data〉 |= extra commitments, including Bitcoin block headers2

〈timestamp〉 |= 100-ns intervals since 0001-01-01-00:00UTC. int64

〈target〉 |= compressed target: uint32

〈nonce〉 |= 80-bit field, to be varied by miners when hashing

〈transaction-list〉 |= 〈coinbase-transaction〉 〈other-transactions〉
〈coinbase-transaction〉 |= first transaction in block

〈other-transactions〉 |= 〈transaction〉 〈other-transactions〉 | ε

5.2 Proof of work

Zen’s PoW puzzle is currently set as SHA-3. Before version 1.0 is released,
this will change to the multi-hash scheme described in section 8.2. The puz-
zle’s difficulty is encoded as a compressed target, in a similar manner to
Bitcoin: the upper byte of the compressed target is an exponent, the lower
three bytes a significand. The decompression algorithm is:

Algorithm 1 Decompress target to bigint

1: procedure DecompressTarget
2: upperByte← targetcompressed ‖ 0xff000000
3: exp← (upperByte� 24)− 24
4: significand← (targetcompressed ‖ 0x00fffff) + 1
5: return significand ∗ 2exp − 1
6: end procedure

The corresponding compression algorithm takes a bigint and returns an
unsigned 32-bit integer.

2Specification of commitments is not finalized. This section will be enhanced as the
protocol is refined.
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Algorithm 2 Compress target to uint32

Require: 1 ≤ target < 2256

1: procedure CompressTarget
2: x← target+ 1
3: t← 0
4: while 2t ≤ target do
5: t← t+ 1
6: end while
7: if t < 24 then
8: sig ← x
9: exp← 24

10: else
11: sig ← x� (t− 24)
12: exp← t
13: end if
14: sig ← sig − 1
15: return (exp� 24) + sig
16: end procedure

The network difficulty is defined as 2256 divided by the uncompressed
target—the greater the difficulty, the harder it is to find a block, as one would
expect. Each block commits to the network difficulty by the compressed
target in its header. A valid block commits to the correct network difficulty
as calculated by the update algorithm given in section 8.1.

5.3 Merkle root commitments

Aside from commitments to difficulty, to block number, and to the state of
the Bitcoin blockchain, each block also commits to:

1. a list of transactions

2. a list of witnesses—that is, data used in validating transactions

3. the Active Contract Set (ACS).

Each commitment is via a merkle tree, a data structure used in Bitcoin
(and most other blockchains) to commit to a list of transactions. At the time
of writing, Bitcoin is in the middle of a potential activation of the Segregated
Witness (SegWit) soft-fork, which moves a transaction’s witnesses (which
are normally signatures or collections of signatures) to an area outside of the
transaction itself—enabling improvements to the efficiency and immutability
of transactions. A Bitcoin block must still commit to the witnesses in or-
der to permit validation of their transactions. For backwards-compatibility,
Bitcoin will place this commitment in the coinbase transaction. In Zen, all
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transactions put signatures in dedicated witness fields, and the witness com-
mitment appears in the block header.

For an explanation of the use of merkle trees to calculate a commitment
to a list of data, we recommend Becker [2008]. Zen’s merkle tree fixes a
small flaw in Bitcoin’s implementation: rather than duplicating the last item
of an odd list—if one should appear at some iteration of the merkle root
algorithm—we complete any list of items to an exponent of 2, adding empty
hashes. Note that these are tagged hashes, so the hash of an empty witness
is different from that of an empty transaction.

5.3.1 ACS commitments with Efficient Sparse Merkle Trees

The remaining merkle root commitment in the initial release of Zen is to
the active contract set. The ACS at any point in time is the set of contracts
capable of generating autotransactions. This set changes within each block
and between blocks as contracts activate and deactivate. The rules for con-
tract activation, extension and deactivation are part of the Zen consensus,
but we commit to the contract set in each block for a several reasons—to
make lightweight wallets possible, to make a consensus fork immediately
detectable, and to make block validation faster.

Each block commits to the active contract set after all transactions in
the block, and then after all inactivating contracts are removed from the set.
In addition to committing to the contracts themselves, we commit—in the
same merkle root—to a small amount of metadata for each contract, namely
the block number after which it will expire. We explain further in section 6.

The conventional merkle tree data structure is inefficient for commit-
ting to the ACS, in which many items persist from one block to the next.
Moreover, the ACS may grow quite large, making block validation slower
as the blockchain is extended. Ethereum has a similar problem (exacer-
bated due to contracts never expiring) and introduced the Patricia tree, a
modification of the radix tree, as a solution. However, Patricia trees, while
efficient, lack (along with conventional merkle trees, in fact) an intriguing
property—the ability for a node to efficiently generate a short proof of non-
membership. This is a very useful property for a lightweight client, which
can now validate autotransactions without itself keeping track of the ACS.
It is even possible to efficiently incorporate validation of a proof of (non-
)membership into a contract itself, which expands the utility of contracts.
Recent work [Dahlberg et al., 2016] introduces a data structure called the
efficient sparse merkle tree, which provides fast generation of proofs of
membership and non-membership, along with fast insertions and deletions.
In addition, the authors prove that the security of each function of their
data structure reduces to the security of the underlying hash algorithm.

Here is a brief description of the operation of the efficient sparse merkle
tree (ESMT), and how Zen uses this structure to commit to the ACS. Each
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contract has a unique tagged hash. Much as in a (merklized) radix tree,
rather than storing contracts at the leaves of a tree, we use the hash of a
contract as a pointer to a leaf, at which we attach an empty hash if there is no
active contract, and the hash of some non-empty value if there is a contract.
In the case of the ESMT, we use a complete binary tree of height 256. Such
a tree has 2256 leaves and so must be stored as a sparse data structure. We
pre-compute empty digests, i.e. the merkle roots of empty trees of height
0, 1, 2, etc., up to 255. Using these, and some cached non-empty digests,
we can efficiently compute all required data for modifying the ESMT and
generating audit paths—the proofs of membership and non-membership.

As mentioned above, we commit to some meta-data for each active con-
tract, making our active contract set more properly a key-value store. Doing
so transforms the ESMT into a persistent authenticated dictionary (PAD).
The extension to a PAD is suggested in Dahlberg et al. and does not affect
the proof of security reduction.

5.4 Transaction validity

A block is invalid if any of its transactions are. Transaction validation is
dealt with in section 7.

5.5 Other chain state validity

In addition to the validity rules given above, each block may contain Bitcoin
block headers. These headers are validated according to the full Bitcoin con-
sensus rules, meaning that their transactions must also be valid! We forgo
the re-implementation of an entire Bitcoin node to achieve this, and instead
provide an RPC interface to talk to an existing Bitcoin client and obtain
valid block headers. The consensus Bitcoin chain, as far as Zen consensus
is concerned, is the valid Bitcoin chain committed to in Zen block headers
with the most proof of work. Miners are rewarded for including valid block
headers by being able to claim more Zen tokens in the coinbase transaction.

6 Contracts

When talking about a blockchain, there are good contracts and bad con-
tracts. Good contracts run without inconveniencing any node or miner, pay
for their keep, and use no more resources than they need to. Bad contracts
break these rules.

The Zen protocol requires contracts to prove that they are good—that
is, well-behaved citizens of the Zen ecosystem. This is a key distinction from
protocols which allow contracts to be stopped in the middle of operation.

We discuss contracts in stages. First, we discuss the contract lifecycle—
how they enter and leave the active contract set. Secondly, we talk about how
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contracts operate to put transactions into the blockchain. Lastly, we tackle
how contracts are created, and how they prove that they don’t consume
excessive resources.

6.1 The contract lifecycle

Zen tracks contracts in the active contract set(ACS), the set of those con-
tracts which can themselves affect the Zen consensus. A contract enters the
ACS when a transaction includes its source code and pays a contract sacri-
fice. That contract sacrifice then pays miners for the time that the contract
remains active. The contract becomes inactive again when the contract sac-
rifice is depleted.

6.1.1 Activation

A transaction activates a contract by providing its source code, proving its
good behaviour, and paying a contract sacrifice to keep it alive for some
number of blocks. If the transaction successfully proves that a contract has
the necessary properties to enter the Zen consensus, the sacrifice is restricted,
meaning that miners can only claim a portion of the sacrifice each block.
The size of the sacrifice and the rate at which it can be claimed depends on
the size of the source code and how much computation is needed to verify
the proof.

If a contract either fails to validate, or has a higher version number than
is currently defined, then the contract sacrifice is unrestricted, and can be
claimed by any miner. That is to say: the active contract set only contains
validated contracts with defined behaviour.

The contract field of a transaction is parsed as follows:

〈contract〉 |= 〈code〉 〈bounds〉 〈hint〉 | 〈high-v-contract〉
〈high-v-contract〉 |= 〈contract-version〉 〈contract-data〉

Here code is the source code of the contract-function, bounds is a com-
mitment to the amount of computation needed to validate the contract,
and hint is an additional data field containing “hints”, which reduce the
computation needed to validate the contract.

The contract sacrifice required to activate a contract for n blocks, in-
cluding the current block, is α ∗ bounds + β ∗ (n − 1) ∗ size, where α and
β are constants. This sacrifice is paid in the Zen token. Contracts must be
activated for at least two blocks, i.e. the activation block and the following
block. This enforces the property that each change to the ACS is recorded
in at least one block.
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6.1.2 Extension

Contracts may be extended by putting their identifier in the data field of a
transaction’s contract sacrifice lock. Any such lock has its sacrifice counted
towards the referenced contract, rather than the contract, if any, in the
transaction’s contract field. Only active contracts can be extended. The
number of additional blocks for which an extended contract remains active
is calculated based solely on the size of the contract’s source code in bytes.
It costs β ∗ n ∗ size to extend a contract for n blocks, where β is the same
constant as above. This makes the marginal cost to keep a given contract in
the ACS equal, whether extending or activating.

6.1.3 Deactivation—and reactivation

The ACS tracks the last block in which each contract is active. If not ex-
tended, at the end of this block, the contract becomes inactive, leaving the
ACS. Once inactive, nodes are no longer required to track the contract in
memory or even on disk, and reactivation requires exactly the same condi-
tions as the activation of a fresh contract.

6.2 Contract execution

Contracts only affect consensus via transactions. Zen nodes don’t care where
these transactions come from—only that the contracts could have generated
them. Some transactions may identify themselves as created by several con-
tracts working together, or by contracts and users—we deal with these cases
in section 7.5. What about the simplest case, when a transaction is generated
by only one contract?

Suppose a node sees a transaction, T whose inputs are all locked to the
same contract, C. How should it validate this transaction? Simple: try to
reproduce the same transaction by running the contract. If C is inactive,
then it can’t generate T , and won’t accept T in a block. But if the contract
is active, then we treat it as a pure function accepting some variables and
returning a reduced transaction—a transaction with no witnesses. When
validating an autotransaction3, a node:

1. finds the arguments for the contract function

2. passes them to the contract function

3. checks that the result equals the transaction with witnesses stripped.

The arguments for the contract function comprise the context in which
it runs, together with a message specific to the transaction. The message can
be either in a witness, or in the lock of an input spent by the transaction.

3A transaction generated by a contract.
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6.2.1 Witness data as argument to contract function

If a node sees an autotransaction with a non-empty first witness, it uses that
witness as a message to the contract function. This form of autotransaction
can only be created by a user (who may be using an automated—off-chain—
process to create it).

6.2.2 Lock data as argument to contract function

If a node sees an autotransaction whose first witness is empty, it looks at the
first input spent by that transaction, takes the data field from its lock (which
will be a contract lock), and passes it to the contract as the message. This
form of autotransaction can be created by users and by other contracts4.

6.2.3 Errors and time-outs

What happens if, instead of returning a reduced transaction, the contract-
function raises an exception, or runs forever? The answer is that it never
does. In order to activate a contract—to let it generate transactions—the ac-
tivating transaction must prove both that it never throws an error, and that
it always terminates. In fact, it must prove how long it takes to terminate—
see subsection 6.4.

6.2.4 Contract context

In addition to a per-transaction message, contracts also know about some
of the current blockchain state. Contracts have access to their own hash, to
all UTXOs, to the headers of the last 500 blocks, and to the hashes of all
blocks in the blockchain.

The basic type signature of a contract function is

( message : array byte
∗ cont rac t Id : array byte
∗ utxoMap : ( outpo int −> opt ion output )
∗ l i s t blockHeader
∗ blockHashes : l i s t ( array byte ) )
−>
( l i s t outpo int
∗ l i s t output
∗ opt ion cont rac t )

Note the Contract option field: autotransactions can activate new con-
tracts.

4Miners or other nodes can opportunistically try to use the contract lock data they see
as messages to contract functions. Future contract and transaction versions may support
transaction outputs which require another autotransaction to consume them immediately,
allowing for guaranteed chained contract execution.
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6.3 Writing a contract

Contracts are written in a dialect of the dependently typed functional lan-
guage, F* (pronounced F-star), with a custom standard library. Program-
ming in F* is quite like programming in ML, OCaml, or F#. The dialect
excludes unsafe expressions which could break Zen’s security guarantees.
Additionally, many library functions specific to contract programming are
included: SHA-3, EdDSA, etc.

6.4 Complexity bounds: proof and verification

Any program written for the Zen blockchain must have a specific type. The
Zen dialect of F* is capable of expressing resource use in the type of a
program, and proving that these types accurately describe the behaviour of
the program. The type signature of an F* contract is the basic type signature
given at at 6.2.4, annotated with a computation cost and some information
about the arguments. For example:

( message : ( n : nat & array byte n)
∗ cont rac t Id : array byte 32
∗ utxoMap : ( outpo int −> opt ion output )
∗ l i s t blockHeader
∗ blockHashes : l i s t ( array byte 32))
−> co s t
( l i s t outpo int
∗ l i s t output
∗ opt ion cont rac t ) (20 + 3 × n)

In the above example, the type of message, a byte array, is refined to
carry its length n. This number n is then used as part of the function’s return
type, specifying it to have a cost of 20 + 3 × n. This construction is only
possible in a dependently typed language like F*.

Complexity is represented by a notional count of the work to perform
each evaluation or reduction.5 The version 1 complexity model attempts to
produce bounds no more than a factor of about 2 away from the empiri-
cal cost of running the contract. Later contract versions will likely attempt
to assign prices to each operation via the operation of a market, but the
mechanism design for this is considerably more complex. In any case, Bit-
coin, which has fixed, hard limits on “opcode count”, shows that a roughly
accurate system can be sufficient.

Most of the time, developers can just specify a cost for their contracts
and allow F* to prove that the cost is correct. This is possible because F*

5The version 1 cost model is represented by a generalized monad similar to that de-
scribed in Danielsson, with costs corresponding to the instrumental semantics given in
Rosendahl. Future contract versions will use the generalized monad given in McCarthy
et al.
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has sufficient automated proving abilities to infer bounds on most contracts.
A particularly unusual or complicated contract may require the developer
to help F* prove a complexity bound. This is done by writing lemmas, or
annotations, on intermediate expressions. The prover uses these proofs to
guide its search.

6.5 Under the hood

When a contract is activated, the business of validating the various nec-
essary proofs is delegated to a separate F* process. This process runs Z3,
an automated theorem prover, to prove the contract’s assertions. In pub-
lish mode, the Zen client instructs the Z3 solver to run with configurable
resource limits, creating hints as it goes. These hints tell the Z3 solver the
most efficient way to construct a proof, without following any of the dead
ends in the initial search.

The client then uses the hints to calculate the required Zen sacrifice to
activate the contract and creates the activating transaction.

The output of the F* process is F# source code. The node takes this code
and compiles it on the fly to Common Language Runtime code, then caches
the resulting code object. The same process is applied to the bounds them-
selves, returning a simpler program guaranteed to calculate a complexity
bound within a few hundred CPU cycles.

When an autogenerated transaction is received, miners run the com-
plexity function to check the upper bound, then decide whether or not to
attempt validation and include the transaction in the next block. Transac-
tions are verified using the compiled CLR code objects. This makes contract
code approximately as fast as other compiled binaries.

6.6 Protocol upgrades

High version contracts are considered to be capable of doing anything and
always to be active. Assets locked to a high version contract can be taken by
anyone on the network. Any contract sacrifice with a high version lock can
similarly be immediately claimed by any miner. This theoretically enables
any new contract language to be implemented by soft-fork—in practice, it is
likely to be used initially to tweak parameters and add library functions. A
key improvement that may be incorporated into the 1.0 release is the ability
for a contract to specify how much of the Bitcoin chain state or Zen chain
state it wants to have access to, paying a different sacrifice accordingly.

6.7 Economic limits

To prevent DOS attacks, centralization, etc. a limit is imposed on the total
amount of computation in one block. For autotransactions, the amount of
computation is given by the cost bound function, rather than the actual
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amount of computation taken by that specific autotransaction validation.
This makes it possible for miners to select transactions for inclusion in a
block based on fees and computation before running the contracts, which
improves efficiency. User-generated transactions are counted too, at a re-
duced rate: each PKLock on each input is counted as having the same com-
putational complexity as one hash and one signature validation operation.
High version transactions are set to have zero complexity. This enables the
computation limit effectively to be raised via soft fork, if necessary.

The per-block computation limit is accompanied by a soft block size limit
which halves mining reward for every megabyte above 2MB. Note that this
limit will become less economically binding as the maximum mining reward
decreases.

7 Transactions

Zen transactions do several things. They move assets, as in Bitcoin. They
may activate and extend contracts. They may put raw data into the Zen
consensus. Some transactions may create tokens.

7.1 Structural validity

As with blocks in the previous section, we give a schema for the structure
of a transaction.
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〈transaction〉 |= 〈transaction-version〉 〈input-list〉 〈witness-list〉
〈output-list〉 〈optional-contract〉

〈transaction-version〉 |= transaction version: uint32

〈input-list〉 |= 〈outpoint〉 〈input-list〉 | ε
〈witness-list〉 |= 〈witness〉 〈witness-list〉 | ε
〈output-list〉 |= 〈output〉 〈output-list〉 | ε

〈optional-contract〉 |= 〈contract〉 | ε
〈outpoint〉 |= 〈tx-hash〉 〈index〉
〈tx-hash〉 |= 256-bit transaction hash

〈index〉 |= index of output in given tx-hash: uint32

〈witness〉 |= witness data: byte[]

〈output〉 |= 〈output-lock〉 〈spend〉
〈output-lock〉 |= 〈fee-lock〉 | 〈contract-sacrifice-lock〉 |

〈pk-lock〉 | 〈contract-lock〉 | 〈high-v-lock〉
〈spend〉 |= 〈asset〉 〈amount〉
〈asset〉 |= 〈contract-hash〉 〈asset-index〉

〈asset-index〉 |= 256-bit asset index

〈amount〉 |= quantity of asset locked: uint64

〈fee-lock〉 |= FeeLock 〈lock-core〉
〈contract-sacrifice-lock〉 |= ContractSacrificeLock 〈lock-core〉

〈pk-lock〉 |= PKlock 〈pk-hash〉
〈contract-lock〉 |= ContractLock 〈contract-hash〉 〈contract-data〉
〈high-v-lock〉 |= HighVLock 〈lock-core〉 〈type-code〉
〈lock-core〉 |= 〈lock-version〉 〈lock-data〉

〈lock-version〉 |= lock version: uint32

〈lock-data〉 |= lock data: byte[]

〈pk-hash〉 |= 256-bit public key hash

〈contract-hash〉 |= 256-bit contract hash

〈contract-data〉 |= contract-directed data: byte[]

〈type-code〉 |= lock type identifier: uint32

We see that all transactions have inputs, witnesses and outputs, and may
have one contract. Contract structure is given in section 6. An additional
structural rule not given above is that the length of the input list and the
witness list must be equal.

Inputs are references to existing unspent transaction outputs (UTXOs),
as they are in Bitcoin. Each such reference consists of a transaction identifier
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and the index of the output within that transaction.
Witnesses are raw data. Their interpretation depends on the lock.
Outputs contain spends, which specify what is being put into the

UTXO set, and output locks, which give the conditions to use the spend
in question.

The contents of the contract field do not affect the validity of a transac-
tion, although they do affect, of course, what happens to the contract. This
provides forward-compatibility by allowing soft-forks to define new contract
versions. This document describes version 1 contracts.

Output locks are all serialized with a version, a type code, and lock
data, but we impose additional structural validity rules on version 1 locks,
corresponding to the definitions given above—for instance, a PKLock is
defined as any lock with version 1 and type code 3, and is then required
to have lock data of length exactly equal to 32 bytes, which is the length of
a pubkey hash.

7.2 Coinbase transaction validity

After structural rules are checked, a coinbase transaction is subject to more
checks. Firstly, it must contain no inputs (and therefore no witnesses). Sec-
ondly, the spends of its outputs are checked. A coinbase transaction may
claim:

1. any fees in its block, no matter what asset they are paid in

2. a set miner reward, paid in Zen tokens

3. any unrestricted contract sacrifices

4. any restricted contract sacrifices to which it is entitled.

The meaning of contract sacrifices is given in section 6. Fees are not
claimed by spending the outputs with a fee lock, but rather in each block
the total amount of each asset locked with a fee lock is calculated and added
to the per-asset maximum on what the coinbase transaction may generate.
This is a similar set-up to that of Bitcoin, except that all fees must be
explicitly allocated in each non-coinbase transaction.

The outputs of coinbase transactions may not be spent by any transac-
tion whatsoever for 100 blocks.

7.3 User-generated transaction validity

Any transaction whose inputs have no contract locks is counted as user-
generated. Such transactions may neither create nor destroy any assets: any
left-over value in any spend must be allocated to a fee-locked output or
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locked to a change address. In practice, this means user-generated trans-
actions are restricted to spending PKLock inputs.3 These transactions are
validated similarly to Bitcoin segwit transactions:

1. Each witness is parsed as a pubkey, a signature and a sighash type.

2. According to the sighash type, a subset of the transaction is serialized
and cached. In every case, the witnesses are stripped.

3. Each witness is checked against the corresponding input for matching
pubkey.

4. Each witnesses signature is checked against the serialized transaction
and the provided pubkey.

Sighash types are an idea from Bitcoin, where users specify which parts
of transactions they sign. For instance, a user can indicate that the signature
covers only one input and one output, without caring about other inputs and
outputs. Zen’s sighash types are the same as those in Bitcoin, encoded the
same way: SIGHASH ALL is 0x1, SIGHASH NONE is 0x2, SIGHASH SINGLE is
0x3, and SIGHASH ANYONECANPAY is 0x80.

Caching the transaction avoids O(n2) complexity in validating transac-
tions with many inputs.

7.4 Autotransaction validity

Any transaction with at least one contract-locked input is validated as an
autotransaction, or contract-generated transaction. Autotransactions obey
two rules: they create only the assets with identifier equal to the identifier
of their contract(s), and their contract(s) are capable of generating them,
when given some data as input. How this occurs is a main subject of section
6.2.

7.5 Co-operative transaction validation

Contracts and users can co-operatively create or sign a transaction. In this
case, each signature must sign the necessary parts of the transaction, while
each contract must generate the entire transaction when run with the spec-
ified arguments.

7.6 Validation

The algorithm for validating a transaction is as follows:

3Multi-signature locks will be added at a later stage of development, but much the
same functionality is available immediately by using a simple contract.
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Algorithm 3 Validate transaction, Part 1

1: procedure ValidateTransaction
2: n ← length(transaction.inputs)

3: digests ← Map<Transaction,hash>.init

4: executed ← Set<hash>.init

5: for i = 0 to n− 1 do
6: current input ← transaction.inputs.[i]

7: lock ← current input.lock

8: witness ← current input.witness

9: if lock unspendable then
10: return false
11: else if lock.version > 1 then
12: continue
13: else if lock matches PKLock then
14: reduced tx ← reduce(transaction,i,witness.sighash)

15: if reduced tx in digests then
16: digest ← digests.[reduced tx]

17: else
18: digest ← hash(reduced tx)

19: digests.[reduced tx] ← digest

20: end if
21: if validate pk(digest, lock.pkhash, witness) then
22: continue
23: else
24: return false
25: end if

(Algorithm continued on following page.)
Input locks are validated using the corresponding witness. Inputs locked

with public key hashes are verified independently of each other. Their cor-
responding witnesses carry sighashes indicating which inputs and outputs
they sign. An input locked with a contract lock is validated by running the
contract on data stored either in the witness or the lock itself, as described
in 6.2. However, if the contract has already been used to validate an input,
it runs again only if the witness is not empty.

Provided that a contract validates at least one of the inputs of a transac-
tion, that transaction may create or destroy any amount of that contract’s
assets.
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Algorithm 4 Part 2

26: else if lock matches ContractLock then
27: contracthash ← lock.contracthash

28: if not active(contracthash) then
29: return false
30: else if contracthash in executed and witness = [] then
31: continue
32: else if witness = [] then
33: msg ← lock.data

34: else
35: msg ← witness

36: end if
37: if exec(contracthash, msg) 6= strip(transaction) then
38: return false
39: else
40: add contracthash to executed

41: continue
42: end if
43: else
44: return false
45: end if
46: end for
47: return true
48: end procedure

8 Chain state

Aside from transactions and contracts, there are two other large elements of
chain state: mining difficulty and Bitcoin state.

8.1 Updating network difficulty

Network difficulty is adjusted each block using an exponential moving aver-
age of inter-block interval. The EMA block interval is calculated as:

τn =

{
0.95τn−1 + 0.05tn, n < 100

0.999τn−1 + 0.001tn, n ≥ 100

where τn is the estimator of inter-block interval for block n, and tn is observed
inter-block interval for block n. τ0 is set to five minutes. We target a block
time of five minutes, giving us a target multiplier of five minutes

τn
. We clamp

this multiplier to the range [0.95, 1.05] and multiply the previous block’s
network difficulty by it to calculate the current block’s network difficulty.
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8.2 Multi-hash mining

The Zen protocol will use the multi-hash mining algorithm described in
Perlow and Cook [2017]. Briefly, any block can be mined using one of a
number of hash algorithms. Holders of the Zen token gain the right to vote
for what the ratio should be between those algorithms, and the difficulty of
each hash algorithm adjusts to enforce the result of this vote.

In Zen, one vote is held in each 2000 block period. Votes are counted
from the 500th until the 1500th block, and the ratio adjustment occurs at
the start of the next period. Zen tokens do not grant voting rights until
held for 1000 blocks without moving. Ratio adjustment targets the result
of a vote gradually, with no vote able to raise or lower difficulty by more
than 20% in any voting period. Contracts and users are equally able to vote.
Voting via contracts allows, among other things, for a user to put Zen tokens
into cold storage while still voting with them.

A vote is recorded on a special unspendable output with the identifier
(contracthash=1,index=0). The output is given a contract lock with con-
tracthash set to hash 0x1, with the vote itself, a list of natural numbers,
serialized into the data field of the lock.

8.3 Bitcoin integration

The very tight integration of Bitcoin into the Zen protocol enables many
new contract classes using Bitcoin as collateral against assets in Zen, and
vice versa. It is very simple to write a contract that operates only if some
particular coins move on the Bitcoin network, for example.

Zen’s consensus on the Bitcoin blockchain is co-ordinated by commit-
ments to Bitcoin blocks. Miners include Bitcoin block headers in their own
Zen block headers in return for a reward. Any valid Bitcoin block header
may be included in a Zen block, but the Zen consensus only acknowledges a
change to the Bitcoin blockchain if the corresponding Bitcoin block is valid
and on the chain with most proof of work. Zen does not commit to the va-
lidity of a Bitcoin block until its timestamp is more than 5 days in the past.
This delay reduces the effect of Bitcoin chain reorganizations, and reduces
the impact of Bitcoin block withholding attacks.
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